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SUMMARY

There are several bi—directional situations where it is

required to obtain a measure of correlation. The question has

been raised often that the bi—directional correlation coefficients

so far known are not scale invariant even asymptotically .

Following Cox ’s procedure (Cox, 1975), we introduce a new

correlation coeff icient which has the desirable property of

being invariant under scale for large samples with von Mises

marginala. We obtain its asymptotic distribution under the

hypothesis of independence. We examine its properties, and

give a numerical example. C
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1. Cox ’s Proc edure

Cox (1975) derived tests for “von Miseness ” for

circular observations using the exponential distribution

with probability density function proportional to

exp(a.1 cos x +B 1 sin x +1
2 
cos 2x +82 sin 2x)

If X
1
1...,X is a random sample , then the agreement wi th

the von Mises density 0.2 = 8 2 = 0  is thus tested from the

conditiona l distribution of (
~ cos 2X . , E sin 2 X )  given

(~~cos X~ . !sinX.)

Let (Xi•
Y
i
)
~~•~~•~~

(X
~~
Yn
) be n independent observations

on a torus. Mardia (1975) introduced the correlation coefficient

of (X~~~Y~~) , i=1 ,...,n as

2 2
max (D~ ,D )/[(l —~~~~~) (1 R

2
) 1  ( 1. 1)

where

n2D~ f~~ 
cos(X*~~Y*) -n~1~21

2
+ ( ~ sin(X

i=1 i=1

x~ (X -i~) mod 2rr and ~~* = (Y. -Y0
) mod 2r~ , and

where and R2 are the mean resultant lengths and

are the mea n directions of X . and Y . respectively.

(Downg andEifler (1975) show the equivalence of this correlation

with a correla tion coefficient introduced by Downs (1974) in

___________ I
~~~~~~~~~~~~
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a different set up). Downs and Bifler (1975) point out that

the distribution of (1.1) will in genera l depend on the

concentration parameter of the marginals. (For a summa ry of

various circular correlation coef ficients, see Pun and Rao

(1976)).

it is shown that Cox ’s procedure (Cox, 1975) provides a new

correla tion coefficient which is Scale invariant for large

samples with von Mises marginals.

Consider the probability density function introduced by

Mardia (1975) as

C exp[~ \
1 cos

(x_ ~) +,4~2 cos(y—~) +acos x cosy+ b sinxcos y

+ c c o s x s i n y + dsin x siny) , 0~~x, y~~ 2rr

Following Cox ’s procedure , to test the hypothesis of

independence (i.e. a = b = c = d = 0 )  with von Mises marginals ,

we should consider the distribution of

nT.1’ = (Z coa X . cos Yi, ) cos X . s i n Y . ,  y~s in X . c o s Y . ,E s i n X . sin Y.

given

n~ ’= (T cosX., ~~sinX ., ~‘cos Y., E sinY.)

To obtain a correlation coefficient, a suitable function

of U~T is considered in section 2. Its asymptotic
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distribution under the null hypothesis is considered in

section 3. The properties of the resul ting coefficient is

examined in section 4 together with its spherical extension .

In section 5, a numerical example is given.

2. An Invariant Function

Consider the hypothesis H of independence: a = b = c = d  =0

Under H , let

Cov(i~~~) = i E = I (~~11 ~12
n—  n~~~21 ~22

Set

~ l.2 
= 
~ ll - 

~122;2 221

and denote

g(X,Y) =t~~— E~~~—~~12r (~~— E~~ )~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.1)

where EH denotes the expectation under H , and

= (X 19 . . . X )  and

Let now y ,  TH(U) and E
H

(T) denote the max imum

likelihood estimators of T~ EH
(U) and EH(T) respectively .

It n~ y be noted thpt these estimators are the functions of

the maximum likelihood estimators of ~, v, ‘t1, and 
~2 

where

1.1 = ~~~~~ \ , = Y0 . ,i.
1= A 1(R

1
) ,  and ,t

2
=A~~ (~ 2

) (2.2)

in the notation of Mardia (1972, Chapter 5). Then the
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resulting value of g(X,Y) is

r
2
,~ = t~~~

E
H
(
~
) 
~~ l2

~~(2.3)

The rationale for(2.l) is obvious considering the conditional

distribution of T.flT when U and T are jointly normal. Note

that (2.2) and (2.3) are invariant under separate linear

non—singular transformations on U and T

We now show that this procedure when applied to the

bivariate case with

=

~~~ 

X~Y. , nT ’= (TX., ~~~~ ~~~~ •

leads to r2 where r is the ordinary correlation coefficient.

We assume that under H , X and Y are independent

2 2and N (~~,cy
2

) respectively . Then it can be easily

shown that 
~12  

= = (v ,~j,0,0) and (2.1)

reduces to

fU— ~~v —v (X -~~~ ) —~j ( Y  — v ) 1 2
/c~

2a 2 , (2 . 6)

fl n
where i = T X~ /n and f = ~~ Y1/n . Using the maximum

i=l i=l 2 2
likelihood estimators for ~~ v, and 0 2 under H ,

(2.4) reduces to r
2 
. Hence Cox ’ s procedure does lead to a

suitable correlation for the linear case.
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3. The Correlation Coefficient

Without any loss of generality, let

=
~~~~~~~~~~~ ° (3.1)

A P.

Consequently , ~.i = = 0

It can be shown that

A 1 P~2~ *
2 P.

= ~~ d i a g[( 1 + a2 ) ( l + a 2 ) _ 4rL , (l+a 2)(l—a— 2

(1 a 2
) (1 2 

( 1 0.2
) (1 (3. 2)

.~22 
= diag (a

1
, a

2
, at, a~ ) , and

0, aat. ~

~12 
= :: :: (3.3)

0, a*a2
, 0, 0

where

2a1 
= l+a 2 —2a

2, 2a2
l—a.

2 
(3.4)

A *

= l+ 0.2
_2a , 2a~~= 1— c i 2 (3 . 5)

= E coa X , a~ = E cosY (3.6)

a2 
= E cos 2X , = E cos 2Y . (3.7)

On simplifying, we obtain

11.2 = diag(a 1a~~ a1a~~, a2a~~, a2at )  (3.8)
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Note that

a = R~ , a~ = 2(1 — — ( 3. 9 )

— A * —2 — A

a = R2
, a2 

= 2(1 — R
2 

— ( R
2

.~4t
2

) )  ( 3 . 1 0 )

P. 

= 0, 0, 0) 
(3.11)

and
A — A

E( T ’ ) = (a, 0, a , 0) . ( 3 . 1 2)

Substituting these results in (2 .3 ) , we obtain
2 _ 2 2

( Ü - ~~~~ ) ’ f~ u u
r
2
,~y = { 

~1
a~~ 

2 
~~~~~~ 

+ 
a2
a~ 

+ 
4a2
} 

(3.13)

where

Note that

a
1 

= va;(cosX) , a2 
= v ar ( s in X )

= va (cos Y) • a~ = v a r( s in Y )

Since (~~‘,~~‘) is jointly normal for large n , ng (X ,Y)

is asymptotically x~ under H . Now since (2.1) and (2.2)

are asymptotically equivalent, it follows that under H

nr~~~ is asymptotically )(~



4. Properties of the Correlation Coefficient.

(a) It can easily be seen that the population counterpart

of (3.14) is

Q~ y = + O~~~ + + (4.1)

where

= corr[cos (X —~~0 ) ,  cos ( Y — v 0 1

= corr(cos (X —~~0
), sin (Y—v 0))

0 3 
= corr [sin(X-u0

), cos(Y—v 0))

0 4 corr(sin (X -~.j 0 ) ,  sin(Y—v
0)1

and and are the mean directions of X and Y

respectively (Note that corr (X ,Y) denotes the ordinary

correlation coefficient).

We have 0 ~ < 4

If X and Y are independent, we have ~2 = 0 . Whenxy
2 2 2 2 2

O = 0 = 0 = C = 1 , we ha ve P = 4 . In this case,1 2 3 4 xy

X = Y 0, with probability 1 . For the perfect rotational

dependence of the form .Y = (~X+*)mod 2r, , it is found that

2o = 2 .xy

(b) The exact distribution of U~ T under (1.1) does not

involve nuisance parameter ~~~~~~~~~~~ and 
~~~~~~ 

because

is sufficient for (i.i
1~~ K~~~) ~ i=1,2 . Also the exact
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distribution of r2 does not involve (~~~. , , t . )  , i 1 ,2xy 1. 1

by the same argument as in Cox (1975) .

(c) Let x and Y take values on a p—dimensional torus,

where X ’X = Y’Y = 1 . Then (4.11) immediately extends to

2 p p 2p = E r (Corr (x~ ,Y~ )1
i=l j=l

where X~ = AX, Y*= BY , and, A and B are orthogonal

matrices such that E(X*) = E(Y*) 
!l where = (1,0,0,...,0)

Its sample counterpart can be written, and the above discussion

for p = 2  can be generalized.

5. Numerical Example

Downs (1974) considered the following data related to

the estimated peak times (converted into angles) for two

successive measurements of diasto lic blood pressures.

a = 300 , 15° , 110 40 , 348°, 347° , 341° 3330
, 332° , 28

= 25°, 5°, 349°, 350°, 340°, 3470 , 3450
, 331° , 329° , 28~.

Then

r~ =0 .974 , r~ =0. 213, r~ =0.152 , r~ =0.933

Hence r 2 = 2.27

~which is large. Hence there is a strong evidence for

dependence as it is expected on practical ground. Note that

= 22.7 , and the 1% value of is 13.3.
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